English Deutsch
Новости
Мир антропологии

Джим Аронсон рассказывает о принципах калий-аргонового метода датирования

Однажды я признался, что хотя в принципе кое-что знаю о калий-аргоновом датировании, но не имею понятия, как все это выглядит на практике. Джим немедленно пригласил меня на демонстрацию.

— Лучше всего на месте увидеть, как работает машина, — сказал он.

— Я как первокурсник. Считайте, что я ничего не знаю.

— Это лучше всего, — согласился он. Я встретился с Аронсоном в его кабинете в университете “Кейс Вестерн”. Он провел меня через холл в комнату, набитую сложным оборудованием.

— Эту машину я сам сконструировал,-сказал он. — Вообще-то она невелика. Денег у меня не хватало, вот и пришлось довольствоваться небольшими размерами. К счастью, мне удалось достать хорошие маленькие насосы и масс-спектрометр (очень сложный измерительный прибор). Но он тоже слишком мал. Лучше всего определять им возраст не очень старых предметов.

— Что значит — не очень старых?

— Ну, таких, которым не больше двух или трех миллионов лет.

— По-вашему, это мало?

— Для геолога — да. Ведь есть масса людей, которым нужно определить возраст действительно очень древних образцов, например нефтяникам, специалистам по динозаврам и другим. В подобных случаях счет идет на сотни миллионов лет. Но я интересуюсь плио-плейстоценом и построил свою машину специально для этого периода. Когда будете осматривать ее, не трогайте вон тот толстый провод и даже не проходите под ним: он находится под высоким напряжением, и вас может убить.

Провод был оплетен изоляцией. Он выходил из электрической панели высотой в два метра с многочисленными выключателями и измерительными приборами. Дальше он тянулся по потолку и обвивался вокруг нескольких запаянных стеклянных сосудов величиной с молочную бутылку. Внутри сосудов находились маленькие металлические контейнеры с образцами вулканического пепла. Снизу к запаянным сосудам были присоединены трубки, которые проходили через ряд стыков, регулировочных приспособлений, насосов, измерительных приборов и исчезали в другой части машины, подключенной к компьютеру.

— Масс-спектрометр находится на этом конце. Я не хочу забивать вам голову объяснением его устройства. Он служит для измерения минимальных количеств вещества. Мы включаем ток, чтобы разогреть вулканические образцы в этих сосудах. Когда образцы плавятся, они выделяют весь содержащийся в них аргон. Мы получаем очень мало этого газа. Вот почему нам нужен масс-спектрометр — он усиливает выходной сигнал настолько, что его можно уловить приборами. До изобретения масс-спектрометра это невозможно было сделать. Мы получаем так мало газа, что измерить его иным путем нельзя.

Аронсон   включил   рубильник и стал поворачивать рычажок на панели, постепенно увеличивая электрическое поле вокруг одного из стеклянных сосудов. Через несколько минут образец, находившийся внутри него, начал накаляться.

— Что ж, подождем, пока он совсем не расплавится. Затем погоним освободившийся газ к масс-спектрометру.

Он объяснил, что назначение массивных узлов — делать систему абсолютно герметичной. Насосы, хоть и маленькие, очень мощны, они откачивают из замкнутой системы 99,999999999999% воздуха, создавая почти полный вакуум.

— Роль вакуума такова: в окружающем воздухе много аргона, гораздо больше, чем в вулканических образцах, и если мы допустим хоть немного воздуха в машину, то сигнал будет просто забит шумом. Поэтому воздух необходимо полностью удалить.

Аргон, который измерял Аронсон,  был продуктом распада радиоактивного калия, редкого изотопа обычного элемента.

— В вашем теле сейчас находится около 400 граммов калия. Из этого количества только 20 миллиграммов — радиоактивный калий, или калий-40, если вспомнить его настоящее химическое название. Это очень немного, всего лишь одна 200-тысячная доля, но все же это огромное число атомов. Будучи радиоактивным, калий-40 непрерывно распадается, постепенно превращаясь в устойчивый элемент аргон, инертный газ. Вот сейчас калий-40, содержащийся в вашем теле, превращается в аргон со скоростью около 500 атомов в секунду. Вы, может быть, считаете, что это быстро и что таким образом скоро израсходуется весь калий-40. Но это не так. Если учесть число атомов, это совсем не быстро. Распад калия продолжается с момента образования Земли, и тем не менее этот процесс еще не кончился. В вашем теле находятся триллионы атомов калия-40. Это вещество циркулирует в природе в течение миллионов лет, распадаясь всегда с постоянной скоростью.

Он поправился:

— Я сказал “с постоянной скоростью”. На самом деле это не совсем так. Скорость распада пропорциональна количеству калия-40, которое содержится в обычном калии. По мере того как доля калия-40 уменьшается, распад идет все медленнее. Во времена австралопитеков, три миллиона лет назад, скорость распада составляла 501 атом в секунду1 — на один атом больше, чем сейчас. Следовательно, для наших целей эту скорость можно считать постоянной, хотя в эпоху динозавров она заметно отличалась от нынешней. Во времена, когда происходило формирование Земли, скорость распада составляла 4000 атомов в секунду1. Но за прошедшие с тех пор миллиарды

лет было израсходовано такое количество калия-40, что его распад существенно замедлился. Так и должно быть, потому что скорость распада по отношению к оставшемуся количеству изотопа должна быть постоянной.

Калий-40, объяснял Аронсон, как и все радиоактивные элементы, характеризуется определенным “периодом полураспада”, т.е. временем, которое необходимо для того, чтобы половина его исходного количества превратилась в другой элемент. Период полураспада калия-40 составляет 1,3 миллиарда лет. Поэтому из всего запаса этого изотопа, остающегося сегодня на Земле, половина исчезнет через 1,3 миллиарда лет, половина остатка — еще через 1,3 миллиарда лет, и т.д. Когда общее количество сократится до минимума, скорость распада станет совсем ничтожной. Если в каком-то неимоверно отдаленном будущем на Земле сохранится только сто атомов калия-40 и если Земля в то время еще будет существовать — понадобятся те же 1,3 миллиарда лет, чтобы число их сократилось до пятидесяти.

— Вы хотите сказать, что весь калий-40 постепенно распадается и превращается в аргон? — спросил я.

— Именно так. Калия становится все меньше и меньше. А аргона каждый день — все больше и больше.

— А куда девается весь этот аргон?

— В конце концов переходит в атмосферу. Когда возникла Земля и атмосфера только формировалась, в ней почти не было аргона. Но постепенно он стал накапливаться. Пока мы здесь разговариваем, атомы аргона выходят через нашу кожу в воздух. Сейчас в атмосфере около одного процента аргона. Вот почему я так забочусь о герметичности системы — иначе нельзя будет узнать, сколько его было в образце.

— Вы сказали, что по прошествии миллиардов лет аргона в воздухе всего один процент?

— Да.

— Как будто это не так уж много.

— Для аргона много. Неизмеримо больше, чем в этих вулканических образцах. Аргон вообще очень редкое вещество.

Но тут мне пришел в голову один вопрос: если человеческое тело тоже содержит калий-40, который постепенно превращается в аргон, то почему нельзя измерять распад радиоактивного калия непосредственно в ископаемых остатках? Почему мы используем для этого вулканические образцы?

По нескольким причинам, ответил Аронсон, две из которых имеют решающее значение. Во-первых, в ископаемых костях так мало калия-40, что точные измерения были бы невозможны. Во-вторых, кости выделяли аргон в течение одного или двух миллионов лет. Поэтому нет смысла пытаться измерить то, что осталось. Для получения точной датировки нужно использовать образцы, которые не дают утечки аргона. В этом-то и состоит величайшее достоинство вулканических  материалов:   они практически не выделяют газа — он прочно “заперт” внутри небольших кристаллов.

Во время извержения, объяснял Аронсон, материал выбрасывается в воздух под огромным давлением и при очень высокой температуре. Он начинает остывать, как только попадает в атмосферу, и сплавляется в стекловидную массу или же образует небольшие кристаллы. Это происходит очень быстро, за несколько часов. Поэтому формирование кристаллов можно рассматривать как одномоментное событие. Они появляются на свет абсолютно чистыми, без примеси аргона, образовавшегося раньше. А так как в дальнейшем они будут сохранять в себе весь аргон, образующийся в них при распаде калия-40, ясно, почему в принципе так легко определить их возраст.

— Я просто выпариваю аргон и измеряю его количество, — продолжал Аронсон. — Зная количество калия в начале эксперимента и скорость распада, я могу вычислить возраст образцов с помощью простой арифметики.

В действительности дело обстоит несколько сложнее. На поверхности самих образцов всегда адсорбируется небольшое количество воздуха, и как бы хороши ни были насосы, его никогда не удается полностью удалить. Эту атмосферную примесь тоже надо измерить и учесть. Для этих целей используют одну особенность аргона. Подобно калию, аргон представлен различными  изотопами. Изотоп, в который превращается калий-40, — это аргон-40. Именно он преобладает в атмосфере. Однако в воздухе содержится также более редкий вариант — аргон-36. Его нет в вулканических породах, и поэтому любое его количество, обнаруженное масс-спектрометром, принадлежит остаточному воздуху, который не смогли удалить вакуумные насосы. Поскольку аргон-40 и аргон-36 содержатся в атмосфере в неизменной пропорции — 295,5 атомов первого на один атом второго, Аронсон просто измеряет   количество   аргона-36 в образце, умножает эту величину на 295,5, а затем вычитает ее из итогового результата. Оставшаяся цифра и представляет собой количество аргона-40, образовавшегося при радиоактивном распаде внутри кристалла.

— И количество это так мало, — добавил Аронсон, — что его едва можно измерить.

— А почему?

— Да потому, что сами породы слишком молоды. Я говорил вам, что мы имеем дело с материалом, которому всего два или три миллиона лет. Этого времени просто недостаточно для образования приличного количества аргона.

— Сколько же аргона содержится в образцах вулканических пород, которым три миллиона лет?

— Очень немного. Всего лишь несколько триллионов атомов.

— Это, по-вашему, немного?

— Но ведь атомы ужасно малы, — ответил Аронсон.

Помимо специфических трудностей, связанных с анализом не очень древних пород, Аронсону досаждала еще одна проблема-получение достаточно чистых образцов.

— Они должны быть чистыми, без посторонних примесей и, кроме того, целыми, а не разрушенными, чтобы исключить утечку части аргона. Этим-то и грешили образцы базальта, присланные вами из Хадара. По их внешнему виду я заподозрил, что они подверглись эрозии и утратили какое-то количество аргона. Мне трудно было судить, сколько именно; и все же я решил использовать их,  хотя воздух, адсорбированный на их поверхности,  создавал  дополнительные трудности.

Мне хотелось испробовать и присланную вами партию образцов вулканического пепла, — продолжал Аронсон, — но я сразу увидел, что они слишком сильно изменены, чтобы быть полезными. Обычно я предпочитаю работать с пеплом. Он, как правило, содержит кристаллы полевого шпата или слюды, богатые калием. Когда имеешь дело с такими молодыми образованиями, приходится работать буквально на грани возможностей измерительных приборов. Поэтому лучше брать для анализа материалы с относительно высоким содержанием калия. Если вы этого не сделаете, то получите так мало аргона, что все равно не сможете его измерить, тем более при большой примеси атмосферного воздуха.

— А разве всякий вулканический пепел содержит калий? — спросил я.

— В большинстве случаев да. Но далеко не всегда в таком количестве, чтобы с ним можно было работать. Кроме того, при анализе пепла возникают свои трудности. Нужно знать наверняка, что кристаллы не были повреждены. Если структура их нарушена выветриванием или воздействием высоких температур, они могут терять аргон. Еще хуже то, что пепел часто содержит примеси более старых кристаллов. Способ образования подобных инородных включений может быть различным: например, более древние вещества лежали на поверхности почвы и были покрыты слоем пепла или, наоборот, попали в него значительно позднее. Полевой шпат, как вы знаете, довольно обычная горная порода. Допустим, я взял образец пепла из вулканического слоя в Хадаре, и в нем оказалась примесь полевого шпата, смытого с гор дождями. Он может быть на 200 миллионов лет старше самого образца и содержать огромное количество аргона. Достаточно всего нескольких кристаллов, чтобы свести на нет всю работу по анализу образца. Именно поэтому мне пришлось самому поехать в Хадар и выбрать как можно более надежные образцы. Я понимал, что ваши находки слишком важны, чтобы снабжать их сомнительной датировкой.

Вычисление возраста по данным калий-аргонового анализа

1. Измерить массу образца и определить количество содержащегося в нем калия. Это легко сделать с помощью стандартных лабораторных методов. Предположим, что образец содержит 0,1 г калия.

2. Вычислить, сколько атомов распадается в образце такой величины за год. Известно, что калий-40, содержащийся в одном грамме обычного калия, превращается в аргон со скоростью 3,5 атома в секунду. Поэтому:

3,5 х 60 =  210 в минуту,

х 60 =  12600 в час,

х 24 =  302400 в сутки,

х 365 = 110376000 в год.

Итак, 0,1 г калия даст 11037600 атомов аргона в год.

3. Прокалить образец, направляя аргон (вместе с остатками воздуха, которые могли быть в сосуде) в масс-спектрометр.

4. Получить показания масс-спектрометра. Предположим, что наш образец дал следующие результаты:

36 765 875 000 000 атомов аргона-40 (из воздуха и образца);

27070000000 атомов аргона-36 (только из воздуха).

5. Учесть примесь атмосферного воздуха. Поскольку на один атом аргона-36 в атмосферном воздухе приходится 295,5 атома аргона-40, нужно умножить общее число атомов аргона-36 на 295,5: 27070000000x295.5=7991850000000

Такое число атомов аргона-40 должно быть отнесено за счет примеси атмосферного воздуха. Поэтому из общего показания масс-спектрометра вычитаем атмосферную примесь: 36765875000000-7991850000000=28774025000000

Такое число атомов аргона образовалось из калия-40, содержавшегося в образце.

6. Вычислить возраст образца. Поскольку скорость распада составляет для данного образца 11 037 600 атомов в год, необходимо разделить предыдущую цифру (число атомов аргона в образце) на эту величину: 28774025000000/11037600=2606909.5

Ответ: возраст образца 2,6 млн. лет.

 

Д. Джохансон, М. Иди. Люси. Истоки рода человеческого. Перевод с английского канд. биол. наук Е. 3. Годиной. Москва, “Мир”, 1984 г.


Интересно

Об Александре Невском летопись сообщает, что он дожил до старости. Даты  рождения и смерти новгородского князя по энциклопедии: 1220-1262... Из всех людей, родившихся на нашей планете от палеолита до начала XX века, 40-летнего рубежа смогли достичь менее 10 %, а 50-летнего - не более 2 %. Об этом полезно напоминать нашему современнику, считающемуся в 40 лет чуть ли не молодым, но не устающему клясть пищу, воду, воздух, медицину и цивилизацию с ностальгией о счастливом и здоровом быте предков...

Хайтун С. Д., Социум против человека: законы социальной эволюции, М., «КомКнига», 2006 г., с. 221. Предоставлено Викентьевым И.Л.

Catalog gominid Antropogenez.RU